Dynamic restitution of action potential duration during electrical alternans and ventricular fibrillation.

نویسندگان

  • Marcus L Koller
  • Mark L Riccio
  • Robert F Gilmour Jr
چکیده

The restitution kinetics of action potential duration (APD) were investigated in paced canine Purkinje fibers (P; n = 9) and endocardial muscle (M; n = 9), in isolated, perfused canine left ventricles during ventricular fibrillation (VF; n = 4), and in endocardial muscle paced at VF cycle lengths (simulated VF; n = 4). Restitution was assessed with the use of two protocols: delivery of a single extrastimulus after a train of stimuli at cycle length = 300 ms (standard protocol), and fixed pacing at short cycle lengths (100-300 ms) that induced APD alternans (dynamic protocol). The dynamic protocol yielded a monotone increasing restitution function with a maximal slope of 1.13 ± 0.13 in M and 1.14 ± 0.17 in P. Iteration of this function reproduced the APD dynamics found experimentally, including persistent APD alternans. In contrast, the standard protocol yielded a restitution relation with a maximal slope of 0.57 ± 0.18 in M and 0.84 ± 0.20 in P, and iteration of this function did not reproduce the APD dynamics. During VF, the restitution kinetics at short diastolic interval were similar to those determined with the dynamic protocol (maximal slope: 1.72 ± 0.47 in VF and 1.44 ± 0.49 in simulated VF). Thus APD dynamics at short coupling intervals during fixed pacing and during VF were accounted for by the dynamic, but not the standard, restitution relation. These results provide further evidence for a strong relationship among the kinetics of electrical restitution, the occurrence of APD alternans, and complex APD dynamics during VF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Altered dynamics of action potential restitution and alternans in humans with structural heart disease.

BACKGROUND Restitution kinetics and alternans of ventricular action potential duration (APD) have been shown to be important determinants of cardiac electrical stability. In this study, we tested the hypothesis that APD restitution and alternans properties differ between normal and diseased human ventricular myocardium. METHODS AND RESULTS Monophasic action potentials were recorded from the r...

متن کامل

Autonomic modulation of electrical restitution, alternans and ventricular fibrillation initiation in the isolated heart.

OBJECTIVE Abnormal autonomic nerve activity is a strong prognostic marker for ventricular arrhythmias but the mechanisms underlying the autonomic modulation of ventricular fibrillation (VF) initiation are poorly understood. We examined the effects of direct sympathetic (SS) and vagus (VS) nerve stimulation on electrical restitution, alternans and VF threshold (VFT) in a novel isolated rabbit he...

متن کامل

Determination of action potential wavelength restitution in Scn5a+/− mouse hearts modelling human Brugada syndrome

Brugada syndrome is a primary electrical disorder of the heart, predisposing affected individuals to potentially lethal, ventricular tachy-arrhythmias. A number of mechanisms have been identified as being important increasing the risk of these rhythms. Wavelength (λ) restitution has been suggested to predict the onset of action potential duration (APD) alternans in mouse Scn5a hearts modelling ...

متن کامل

Restitution analysis of alternans using dynamic pacing and its comparison with S1S2 restitution in heptanol-treated, hypokalaemic Langendorff-perfused mouse hearts

Action potential duration (APD) and conduction velocity restitution explain the dependence of these parameters on the previous diastolic interval (DI). It is considered to be an adaptive mechanism for preserving diastole at fast heart rates. Hypokalaemia is known to induce ventricular arrhythmias that could be prevented by heptanol, the gap junction uncoupler, mediated through increases in vent...

متن کامل

Local Onset of Voltage and Calcium Alternans in the Heart

A beat-to-beat variation in cardiac action potential durations (APD) is a phenomenon known as electrical alternans. Alternans desynchronizes depolarization, increases dispersion of refractoriness and creates a substrate for ventricular fibrillation. In the heart, APD alternans can be accompanied by alternans in intracellular calcium ([Ca]i). Recently, we demonstrated experimentally that the ons...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 275 5  شماره 

صفحات  -

تاریخ انتشار 1998